Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients
نویسنده
چکیده
Dispersive and Strichartz estimates for solutions to general strictly hyperbolic partial differential equations with constant coefficients are considered. The global time decay estimates of Lp−Lq norms of propagators are obtained, and it is shown how the time decay rates depend on the geometry of the problem. The frequency space is separated in several zones each giving a certain decay rate. Geometric conditions on characteristics responsible for the particular decay are identified and investigated. Thus, a comprehensive analysis is carried out for strictly hyperbolic equations of high orders with lower order terms of a general form. Results are applied to establish time decay estimates for the Fokker–Planck equation and for semilinear hyperbolic equations.
منابع مشابه
Asymptotic Integration and Dispersion for Hyperbolic Equations, with Applications to Kirchhoff Equations
The aim of this paper is to establish time decay properties and dispersive estimates for strictly hyperbolic equations with homogeneous symbols and with time-dependent coefficients whose derivatives belong to L(R). For this purpose, the method of asymptotic integration is developed for such equations and representation formulae for solutions are obtained. These formulae are analysed further to ...
متن کاملNonlinear Waves on 3d Hyperbolic Space
In this article, global-in-time dispersive estimates and Strichartz estimates are explored for the wave equation on three dimensional hyperbolic space. Due to the negative curvature, extra dispersion is noted, as compared to the Euclidean case, and a wider range of Strichartz estimates are proved. Using these, small data global existence to semilinear wave equations is shown for a range of powe...
متن کاملWave and Klein-Gordon equations on hyperbolic spaces
We consider the Klein–Gordon equation associated with the Laplace– Beltrami operator ∆ on real hyperbolic spaces of dimension n≥2; as ∆ has a spectral gap, the wave equation is a particular case of our study. After a careful kernel analysis, we obtain dispersive and Strichartz estimates for a large family of admissible couples. As an application, we prove global well–posedness results for the c...
متن کاملThe wave equation on hyperbolic spaces
We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on real hyperbolic spaces and deduce new Strichartz estimates for a large family of admissible pairs. As an application, we obtain local well–posedness results for the nonlinear wave equation.
متن کاملENDPOINT STRICHARTZ ESTIMATES By MARKUS KEEL and TERENCE TAO
We prove an abstract Strichartz estimate, which implies previously unknown endpoint Strichartz estimates for the wave equation (in dimension n 4) and the Schrödinger equation (in dimension n 3). Three other applications are discussed: local existence for a nonlinear wave equation; and Strichartz-type estimates for more general dispersive equations and for the kinetic transport equation.
متن کامل